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In this paper, the piecewise Birkho! interpolation polynomials and the modal
superposition method were employed for the solution of dynamic response of m.d.o.f.
system. The related formulae are derived. Because an exact result can be obtained when each
loading can be represented by a piecewise polynomial, the proposed method not only can
considerably reduce computational e!ort compared to the traditional step-by-step
integration solution technique, but also can thoroughly avoid the problems of accuracy,
convergence and stability encountered in many other numerical procedures.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

In the analysis of a multi-degree-of-freedom (m.d.o.f.) system subjected to arbitrary dynamic
loadings, the step-by-step integration procedure generally provides a powerful solution
technique. However, what is worth noting is that it is a very large computational task to
evaluate, by the step-by-step integration approach, the response of structures to
long-duration loads such as might result from an earthquake. In the case of these
long-duration loads, it may be advantageous to use the Duhamel integral and modal
superposition method rather than the direct-integration approach.

When compared with the step-by-step integration procedure, another procedure
presented by Wilson and Dovey [1], Nigam and Jennings [2], Ly [3] in which an arbitrary
dynamic loading is approximated by piecewise linear segments may be preferable.When the
dynamic loading is represented by piecewise linear segments, this procedure can provide an
exact result. However, when the dynamic loading is varied in the form of an arbitrary curve,
the error involved in this procedure can be rather large, especially when the interval
between time points is large. In another paper [4], the present author has extended the
above described procedure to smoothly varying loading cases by using the piecewise second
or third degree Lagrange polynomial for linear s.d.o.f. system. In this paper, in combination
with the modal superposition method, the Birkho! piecewise interpolation functions are
employed to approximate arbitrary applied loadings for the solution of the dynamic
response of framed structure. Since the Duhamel integral in which the applied loading is
replaced by a piecewise Birkho! polynomial can be exactly integrated, and since the third
and "fth degree piecewise polynomials will "t a curve far better than piecewise linear
segments, the proposed solution technique has a far better accuracy than the piecewise
linear approximation procedure, for comparable time interval and computational e!ort.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.
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2. THE EQUATIONS OF MOTION OF m.d.o.f. SYSTEM

The framed structure to be considered in this paper is an m.d.o.f. system subjected to
arbitrary dynamic loadings. At any instant of time t, the di!erential equations of motion are
given by

[m]�vK �#[c]�vR �#[k]�v�"�p(t)�, (1)

where [m], [c] and [k] are the mass, damping, and sti!ness matrices, respectively, and �vK �,
�vR � and �v� the nodal acceleration, velocity and displacement vectors, respectively, and
�p (t)� the applied loading vector. When the exciting force vector is due to ground
acceleration, the inertial force vectors may be given by

�p (t)�"![m]�d�vK
�
(t).

The vector �d� extracts the elements of mass matrix acting along the same axis as the base
excitation.

From the eigenproblem, the vibration mode-shape matrix [�] and frequency vector ���
can be determined. The normal co-ordinate transformation can be used to convert the
n coupled linear damped equations of motion to a set of n independent equations of motion
given by
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If the initial velocity and displacement are zero, the general response expression given by
the Duhamel integral for each mode is
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A(t)"�
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�d�, (5a)
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The calculation of the Duhamel integral thus requires the evaluation of the integrals A(t)
and B (t). In general, integrands p

�
(�)e����� cos�

��
� and p

�
(�)e����� sin�

��
� cannot be exactly

integrated, unless p
�
(�) can be expressed as the product of a complex polynomial and

a complex exponent. Although numerical integration [5] may be employed in such cases, it
cannot provide an exact result. For example, Simpson's rule used in the calculation of the
Duhamel integral is equivalent to "tting each set of three consecutive points with
a parabola, that is, a second degree polynomial; exact result can be obtained only when
both integrands p

�
(�)e����� cos�

��
� and p

�
(�)e����� sin�

��
� are polynomials in which the

number of degrees is not more than 3. This is implausible, because e�����, sin�
��

� or cos�
��

�
can each be expanded in an in"nite power-series. Evaluation of the integrals A(t) and B (t)
by Simpson's rule is equivalent to approximating the polynomial which is the product of
three in"nite power-series by a second degree polynomial; consequently, an exact result
cannot be obtained by the numerical integration method.

In order to solve the problems mentioned above, one can propose an extension of the
procedure in which the dynamic loading is approximated by piecewise linear segments. In
the proposed method, one can employ the Birkho! piecewise interpolation polynomial
p�
��
(�) for approximating the applied loading p

�
(�) in the integrals A(t) and B (t), instead of

using a piecewise interpolation polynomial for approximating the integrands
p
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�. Since the integrands p�
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� can be exactly integrated, computational error exists only because of the

di!erence between p�
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(�) and p
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(�). Therefore, the error resulting from this is much smaller

than that involved in the method in which one treats the entire expression p
�
(�)e����� cos�
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�

or p
�
(�)e����� sin�
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� as one integrand. If the applied loading can be expressed as a piecewise

polynomial, no di!erence exists between p�
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(�) and p

�
(�), and the proposed method gives an

exact result.
An nth degree piecewise polynomial in the kth time interval may be expressed as
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By substituting p�
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(�) into equation (5a), one can obtain
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In the same way, one can obtain
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By substituting equations (6) into equation (4), one can obtain Z
��
(t); then one can obtain

ZQ
��
(t) by substituting A(t), B (t) and Z
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(t) into the equation
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For each mode, modal displacement, velocity and acceleration are given, respectively, by
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The displacement, velocity and acceleration vectors expressed in geometric co-ordinate
are given, respectively, by the following normal co-ordinate transformations

�v�"[�]�>�, �vR �"[�]�>Q �, �vK �"[�]�>G �. (12}14)

From �v�, �vR � and �vK �, one can obtain the elemental force vector of framed structure.

3. THE BIRKHOFF INTERPOLATION FUNCTION

Birkho! interpolation [6] allows the function and a variable number of derivative to be
used as data at each point. The three di!erent Birkho! interpolation functions that will be
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introduced are the "rst, third and "fth degree Birkho! interpolation functions. The
piecewise linear segments approximation procedure, which will be restated in the following,
was presented, respectively, by Wilson and Dovey [1], Nigam and Jennings [2], Ly [3] in
di!erent ways.

3.1. THE PIECEWISE FIRST DEGREE BIRKHOFF INTERPOLATION FUNCTION

Let the two sample points be given at the two endpoints of interval t
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(t
���

)�)t
�
), can be expressed using the values p

�
(t
���

) and p
�
(t
�
) to represent the

coe$cients of the "rst degree polynomial. The function p�
��
(�) may be expressed as

p�
��
(�)"

t
�
!�

t
�
!t

���

p
�
(t
���

)#
�!t

���
t
�
!t

���

p
�
(t
�
)"a

��
#a

��
�

in which a
��

and a
��

may be expressed as

a
��

"

t
�
p
�
(t
���

)!t
���

p
�
(t
�
)

t
�
!t

���

,

a
��

"

p
�
(t
�
)!p

�
(t
���

)

t
�
!t

���

.

3.2. THE PIECEWISE THIRD DEGREE BIRKHOFF INTERPOLATION FUNCTION

Let the two sample points be given at the two endpoints of interval t
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3.3. THE PIECEWISE FIFTH DEGREE BIRKHOFF INTERPOLATION FUNCTION

Let the two sample points be given at the two endpoints of interval t
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4. NUMERICAL EXAMPLE

For the sake of investigating and demonstrating the e$ciency of the proposed method, let
us take a four-storey building as an illustration.

The building shown in Figure 1 is treated as a lump}mass framed structure. The masses,
which are concentrated at each #oor level from the "rst to the fourth storey, are 160, 160,
160 and 80 metric tons respectively. The Young's modulus is E"3�10�kN/m�. The
moment of inertia of all the columns is I

�
"7)2�10�	m� ; that of all the beams is

I


"1)28�10��m�. The area of all columns is A

�
"0)024m� ; that of all beams is

A


"0)024m�. The storey heights from the "rst to the fourth storey are 5, 4, 4 and 4m

respectively. The spans from left to right are 6, 6 and 6m respectively. The damping ratio for
all modes is assumed to be 0. Determine the response of the framed structure subjected to
the following load cases:



Figure 1. Framed structure considered in example.

BIRKHOFF POLYNOMIAL 853
(1) when the frame is subjected to a suddenly applied constant acceleration a
�
"!0)2g at

its base;
(2) when the frame is subjected to an acceleration a

�
"!0)2g sin(	t) at its base.

The adopted means of reducing the number of degrees of freedom is by static
condensation and by kinematic constraints which express the displacements of many
degrees of freedom in terms of a much smaller set of primary displacement variables. For
example, consider the four-storey building frame shown in Figure 1, which includes 48 d.o.f.
(one horizontal translation, one vertical translation and one rotation displacement per
joint). For plane building frames, one can assume that the beams are inextensible. After
considering kinematic constraints, a total of 36 d.o.f. are left (one horizontal translation,
four vertical translation and four rotation displacements per storey). Static condensation
can reduce the dynamic degrees of freedom to only the horizontal translation
displacements. Thus, the "nal result of this reduction is a total of four dynamic degrees of
freedom, only about 8% of the 48 included in the original "nite element model. The
corresponding ratio concerning the global sti!ness matrix is (4�4)/(48�48)"0)7%.
Consequently, there is no considerable di!erence between the step-by-step method and the
proposed method with respect to storage space.

In the following tables, the numbers in parentheses are percentage errors; disp. 1, disp. 2,
disp. 3 and disp. 4 denote the "rst, second, third and fourth storey horizontal translation
displacements respectively.

When the structure is subjected to the "rst load case, some of the results are as shown in
Table 1. The time step used in solution A by the Wilson-
 method is �t"0)02 s; that in
solution B is �t"0)01 s; that in solution C is �t"0)002 s. The time step used in solution
C by the Wilson-
 method is kept extremely small so as to improve the precision of the
results. The interpolation functions adopted in the proposed method could be any one of
the "rst [1}3], third or "fth degree piecewise Birkho! interpolation polynomial, the results
obtained in each case are exact results.

When the structure is subjected to the second load case, some of the results are as shown
in Table 2. Because exciting forces are sinusoidal, that is

p
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and because the damping ratios are zero, by substituting the above equation into equation
(4), exact results can be obtained as
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TABLE 1

Horizontal displacement of structure subjected to the ,rst load case

Wilson-
 method

Time
(s) Disp.

Solution A
(�t"0)02 s)

Solution B
(�t"0)01 s)

Solution C
(�t"0)002 s)

Proposed
method

Disp.1 0)0292749(0)683%) 0)0294192(0)194%) 0)0294739(0)008%) 0)0294763
Disp.2 0)0488780(0)476%) 0)0490511(0)123%) 0)0491092(0)005%) 0)0491117

0)30
Disp.3 0)0616596(0)054%) 0)0616941(0)002%) 0)0616929(0)000%) 0)0616927
Disp.4 0)0669765(0)030%) 0)0669801(0)024%) 0)0669955(0)001%) 0)0669963
Disp.1 0)0342836(2)125%) 0)0338400(0)804%) 0)0335811(0)033%) 0)0335701
Disp.2 0)0571403(1)336%) 0)0564454(0)104%) 0)0563866(0)000%) 0)0563868

2)00
Disp.3 0)0717079(0)121%) 0)0716285(0)231%) 0)0717893(0)008%) 0)0717947
Disp.4 0)0776529(1)162%) 0)0787225(0)199%) 0)0785734(0)096%) 0)0785659
Disp.1 0)0326974(6)311%) 0)0351768(0)793%) 0)0349162(0)046%) 0)0349000
Disp.2 0)0587430(2)795%) 0)0575974(0)790%) 0)0572200(0)130%) 0)0571458

11)5
Disp.3 0)0660612(7)104%) 0)0706930(0)591%) 0)0710839(0)041%) 0)0711134
Disp.4 0)0786908(1)868%) 0)0758713(1)782%) 0)0771375(0)014%) 0)0772477
Disp.1 8)13198 0)0349742(5)308%) 0)0332308(0)059%) 0)0332113
Disp.2 !14)3929 0)0579661(4)412%) 0)0553747(0)026%) 0)0555165

33)0
Disp.3 15)1294 0)0707632(0)796%) 0)0702596(0)079%) 0)0702041
Disp.4 !13)5707 0)0761942(0)537%) 0)0769791(0)049%) 0)0766055
Disp.1 579)857 0)0346989(1)179%) 0)0341079(0)544%) 0)0342944
Disp.2 !3546)11 0)0563789(1)152%) 0)0567095(0)572%) 0)0570360

69)5
Disp.3 !2445)17 0)0706052(1)578%) 0)0717508(0)019%) 0)0717372
Disp.4 !7897)96 0)0744816(4)636%) 0)0787479(0)083%) 0)0781021
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In order to obtain more accurate results, the time interval of the base acceleration used by
the Wilson-
 method is also 0)002 s. For the "rst, third and "fth degree piecewise
interpolation polynomials, interpolation with equal time interval, denoted by �t, is
adopted. With identical time intervals, the accuracy obtained with the third and "fth degree
polynomials is far better than that obtained with a linear polynomial. For evaluating the
dynamic response at t"50 s, one needs only 101 calculations when using the proposed "fth
degree polynomial approximation procedure, but more than 25 001 calculations when using
the Wilson-
 method, for comparable accuracy.

The computational time depends principally on the variation of loads. In this paper, the
computation is done with Pentium III 667 (128RAM). For the second load case, the total
computational time at t"50 s consumed by the Wilson-
 method is 101)28 s. Those
consumed by the proposed method are 0)28 s (in solution A by "rst degree), 0)37 s (in
solution B by "rst degree), 0)32 s (in solution A by third degree), 0)46 s (in solution B by third
degree), and 0)48 s (by "fth degree) respectively. These results demonstrate that the proposed
method is computationally more e$cient than the traditional method for long-duration
excitings.

Although low damping ratios which are typical of most practical structures remove
energy from the dynamically responding system and reduce the transient response, they
almost do not in#uence the accuracy for the structure of the numerical example; however,
they may a!ect computational e!ort. In the numerical example, zero damping ratios
are assumed. In such cases, the direct solution avoids the potentially very large cost of the
modal co-ordinate evaluation, because the damping matrix is generally computed from the
modal matrix together with the speci"ed damping ratios when they are non-zero. For



TABLE 2

Horizontal displacement of structure subjected to the second load case

First degree Third degree

Time
(s) Disp.

Wilson-
 method
(�t"0)002 s)

Solution
A(�t"0)5 s)

Solution
B(�t"0)25 s)

Solution
A(�t"0)5 s)

Solution
B(�t"0)25 s)

Fifth degree
(�t"0)5 s) Exact result

Disp. 1 0)0268030(0)001%) 0)0209822(21)72%) 0)0254759(4)952%) 0)0265372(0)992%) 0)0267894(0)051%) 0)0267982(0)019%) 0)0268032
Disp. 2 0)0439445(0)000%) 0)0341263(22)34%) 0)0417323(5)035%) 0)0434943(1)025%) 0)0439215(0)052%) 0)0439362(0)019%) 0)0439447

0)50
Disp. 3 0)0546682(0)002%) 0)0422057(22)79%) 0)0518807(5)101%) 0)0540958(1)049%) 0)0546398(0)054%) 0)0546583(0)020%) 0)0546691
Disp. 4 0)0592363(0)002%) 0)0456174(22)99%) 0)0561905(5)144%) 0)0586105(1)059%) 0)0592058(0)054%) 0)0592259(0)020%) 0)0592377
Disp. 1!0)0253645(0)007%)!0)0191896(24)33%)!0)0241725(4)693%)!0)0250727(1)144%)!0)0253508(0)047%)!0)0253573(0)022%) !0)0253628
Disp. 2!0)0415681(0)014%)!0)0310626(25)26%)!0)0394980(4)966%)!0)0410697(1)185%)!0)0415407(0)051%)!0)0415528(0)022%) !0)0415621

3)50
Disp. 3!0)0517548(0)020%)!0)0383135(25)96%)!0)0490428(5)221%)!0)0511161(1)214%)!0)0517157(0)055%)!0)0517324(0)023%) !0)0517443
Disp. 4!0)0561286(0)021%)!0)0413846(26)25%)!0)0531095(5)359%)!0)0554288(1)226%)!0)0560847(0)057%)!0)0561038(0)023%) !0)0561168
Disp. 1!0)0208039(0)070%)!0)0132495(36)36%)!0)0198442(4)680%)!0)0204457(1)790%)!0)0208088(0)046%)!0)0208112(0)035%) !0)0208184
Disp. 2!0)0338899(0)084%)!0)0210279(38)00%)!0)0321860(5)107%)!0)0332857(1)865%)!0)0339004(0)053%)!0)0339061(0)036%) !0)0339183

13)50
Disp. 3!0)0420192(0)099%)!0)0255418(39)27%)!0)0397360(5)527%)!0)0412537(1)919%)!0)0420360(0)059%)!0)0420454(0)037%) !0)0420609
Disp. 4!0)0454984(0)123%)!0)0274204(39)81%)!0)0429345(5)751%)!0)0446702(1)941%)!0)0455260(0)063%)!0)0455376(0)037%) !0)0455545
Disp. 1 0)0248316(0)220%) 0)0184683(25)46%) 0)0236431(4)577%) 0)0244777(1)208%) 0)0247659(0)045%) 0)0247713(0)023%) 0)0247771
Disp. 2 0)0407272(0)193%) 0)0298955(26)45%) 0)0386503(4)917%) 0)0401402(1)251%) 0)0406282(0)051%) 0)0406391(0)024%) 0)0406488

32)50
Disp. 3 0)0507085(0)170%) 0)0368163(27)27%) 0)0479540(5)272%) 0)0499732(1)283%) 0)0505943(0)056%) 0)0506103(0)024%) 0)0506226
Disp. 4 0)0549675(0)134%) 0)0397159(27)65%) 0)0518888(5)474%) 0)0541819(1)297%) 0)0548615(0)059%) 0)0548803(0)024%) 0)0548937
Disp. 1!0)0280515(0)187%)!0)0227360(18)80%)!0)0267524(4)453%)!0)0277597(0)855%)!0)0279869(0)043%)!0)0279946(0)016%) !0)0279991
Disp. 2!0)0461703(0)122%)!0)0371105(19)52%)!0)0439081(4)784%)!0)0457069(0)883%)!0)0460916(0)049%)!0)0461066(0)016%) !0)0461142

49)50
Disp. 3!0)0576567(0)097%)!0)0459981(20)14%)!0)0546451(5)131%)!0)0570798(0)905%)!0)0575695(0)054%)!0)0575912(0)017%) !0)0576008
Disp. 4!0)0626074(0)117%)!0)0497511(20)44%)!0)0592003(5)332%)!0)0619628(0)914%)!0)0624987(0)057%)!0)0625240(0)017%) !0)0625344
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the systems with viscous damping, the proposed method can o!er even more computational
advantage than the step-by-step integration method, for the reasons that the latter method
also requires the calculation of the modal matrix and that the response analysis for the
individual modal equations requires very little computational e!ort with the former
method.

It is shown that the proposed method can evaluate with much higher accuracy the
dynamic response of a multi-storey framed structure to long-duration loads which each
varies in the form of an arbitrary curve when compared with the piecewise linear
approximation method or the step-by-step integration method, and that for comparable
accuracy the proposed method requires less computational e!ort than the latter two.

5. CONCLUSIONS

The response of a multi-storey framed structure is determined by means of the modal
superposition method and the Duhamel integral. Firstly, one can approximate every
applied loading p

�
(t) with a piecewise Birkho! interpolation polynomial. Secondly, one can

integrate precisely the Duhamel integrals for each mode and for each loading. Thirdly, one
can calculate the displacements, velocities and accelerations expressed in geometric
co-ordinate by the normal co-ordinate transformation. Finally, one can obtain the
elemental forces. The equations associated with the "rst, third and "fth degree piecewise
Birkho! interpolation polynomials are presented. For the applied loadings which each can
be represented by a piecewise polynomial in which the number of degrees is not more than
"ve, an exact result is obtained from the proposed method; for the applied loadings that do
not satisfy the conditions mentioned above, an exact result cannot be obtained from this
method, but the error is rather small. The proposed method has a higher accuracy than the
traditional step-by-step integration procedure and the piecewise linear approximation
procedure in the case when each loading varies in the form of a curve. For long-duration
loads, the proposed method requires much less computational e!ort as compared to the
e!ort involved in the step-by-step integrationmethod. For example, the computational time
consumed by the proposed method is less than 0)5% of the time consumed by the
step-by-stepmethod for comparable accuracy and storage space, for the framed structure in
numerical example. Unlike the step-by-step integration solution technique, the error
brought by the proposed method does not remarkably increase in the order of magnitude as
the time of response goes on, even when the structure is subjected to an extremely long
duration loading. The proposed method not only has very high accuracy at a very large
interpolation interval, it also converges to the exact result rapidly as the interpolation
interval is reduced. The proposed method can not only provide bene"ts in the systems that
have a few degrees of freedom, but also o!ers a very great advantage in that an adequate
estimate of the dynamic response can often be obtained by considering only a few modes of
vibration, even in the systems that may have dozens or hundreds of degrees of freedom; thus
the computational e!ort may be reduced signi"cantly.
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